Circulating Fluid Temperature Controller

Water-cooled Thermo-chiller Series HRW

Refrigerant-free and energy saving type using no compressor. Ideal for ordinary temperature and high temperature processes.

• Type of circulating fluid: Fluorinated fluids/Ethylene glycol aqueous solution/Clear water, Deionized water
• Temperature range setting: 68 to 194°F (20 to 90°C)
• Cooling capacity: 2 kW/8 kW/15 kW/30 kW
• Temperature stability: ±0.54°F (±0.3°C)

More effective energy-saving through use of an inverter pump

International standards: SEMATECH S2-93, S8-95 SEMI Standard S2-0703, S8-1103, F47-0200

Inverter type
Power consumption 0.5 kWh/h
Facility water 0.32 gpm (1.2 L/min)
Energy-Saving and Refrigerant-free

Energy-saving and refrigerant-free (Ordinary temperature up to 194°F (90°C))
The water-cooled Thermo-chiller which does not use a compressor (refrigerant-free) is suitable for processes operating from ordinary temperature to 194°F (90°C). The energy-savings shown below can be achieved in comparison with existing models (depending on the conditions).

- **Power consumption: Max. 59% reduction** *(SMC comparison)*
The power consumption can be reduced by direct heat exchange between the circulating fluid and facility water with no refrigerating circuit.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Consumption (kWh/h)</th>
<th>Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>4.6</td>
<td>140°F (60°C), 0 kW with 50% load, 8 kW with 50% load</td>
</tr>
<tr>
<td>HRW008-H</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

- **Facility water: Max. 89% reduction** *(SMC comparison)*
The HRW series can achieve reduction in power consumption as it does not have a compressor, and reduction in the amount of facility water used because heat is exchanged directly with the circulating fluid.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Consumption (gpm/L/min)</th>
<th>Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>3.0 (11.2 L/min)</td>
<td>140°F (60°C), 0 kW with 50% load, 8 kW with 50% load, By-pass valve fully closed</td>
</tr>
<tr>
<td>HRW008-H</td>
<td>0.32 (1.2 L/min)</td>
<td></td>
</tr>
</tbody>
</table>

- **Circulating fluid: Max. 13% reduction** *(SMC comparison)*
Enhanced temperature control technology and the unique pump/tank construction achieved the reduced circulating fluid required for operation.

<table>
<thead>
<tr>
<th>Model</th>
<th>Circulating Fluid (gpm/L/min)</th>
<th>Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>0.32 (1.2 L/min)</td>
<td>140°F (60°C), 0 kW with 50% load, 8 kW with 50% load, By-pass valve fully closed</td>
</tr>
<tr>
<td>HRW008-H</td>
<td>3.0 (11.2 L/min)</td>
<td></td>
</tr>
</tbody>
</table>

- **Installation area: Max. 45% reduction** *(SMC comparison)*
(Forced exhaust from rear side)
By emitting the heat from the back, ventilation slits on the side are unnecessary offering reduced installation space.

<table>
<thead>
<tr>
<th>Model</th>
<th>Installation Area (sq ft)</th>
<th>Body Space (in mm)</th>
<th>Ventilation Space (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW008-H</td>
<td>5.5 (0.51 m²)</td>
<td>15.7 in (400 mm)</td>
<td>3.9 in (100 mm)</td>
</tr>
<tr>
<td>HRW008-HS</td>
<td>10.0 (0.93 m²)</td>
<td>15.0 in (380 mm)</td>
<td>0</td>
</tr>
</tbody>
</table>

Pump Inverter Type
More effective energy-saving is achieved through use of an inverter pump.

- **Power consumption: Max. 89% reduction** *(SMC comparison)*

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Consumption (kWh/h)</th>
<th>Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>4.6</td>
<td>140°F (60°C), 0 kW with 50% load, 8 kW with 50% load</td>
</tr>
<tr>
<td>HRW008-H</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

- **Facility water: Max. 89% reduction** *(SMC comparison)*

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Consumption (gpm/L/min)</th>
<th>Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>3.0 (11.2 L/min)</td>
<td>140°F (60°C), 0 kW with 50% load, 8 kW with 50% load, By-pass valve fully closed</td>
</tr>
<tr>
<td>HRW008-H</td>
<td>0.32 (1.2 L/min)</td>
<td></td>
</tr>
</tbody>
</table>
High Performance

- **Temperature stability:** $\pm 0.54^\circ\text{F}$
 (when a load is stable)
 Enhanced temperature control technology achieved $\pm 0.54^\circ\text{F}$
 ($\pm 0.3^\circ\text{C}$) temperature stabilities when a load is stable.

- **Circulating fluid automatic recovery function**
 (Refer to “Options” on page 119.)
 Circulating fluid inside a Thermo-chiller tank can be recovered automatically. (Recovery volume: 3.2 gal (12 L))
 - Reduced maintenance time
 - Faster operation
 - Reduced circulating liquid loss by evaporation or spill

- **Cooling capacity:** Max. 30 kW
 Up to 30 kW cooling capacity achieved.

Easy Maintenance

- **Circulating fluid electrical resistivity control function**
 (Refer to “Options” on page 118.)
 (DI control kit)

Easy maintenance

- Checking the electrical component parts accessible from the front side only
- Possible to replace the maintenance parts (such as a pump) without removing the pipings and discharging the circulating fluid.
- Various alarm displays
 (Refer to page 117.)

Graphs and Tables

- **Cooling capacity chart**
- **Temperature stability graph**
- **Flow diagram**
Electrical Resistivity Control

DI control kit
(Refer to “Options” on page 118.)
Electrical resistivity of circulating fluid (ethylene glycol aqueous solution and deionized water) can be controlled.

Communications

- Contact input/output signal
- Serial RS-485 communication
- Analog communication (Refer to “Options” on page 118.)
- DeviceNet communication (Refer to “Options” on page 118.)

Wetted parts adopt the materials compatible for various circulating fluids.
(Stainless steel, EPDM, etc.)
- Fluorinated fluids: Flourinert™ FC-40
 GALDEN® HT200
- 60% ethylene glycol aqueous solution
- Deionized water/Clear water

Regarding the fluid other than the above, please contact SMC.
Flourinert™ is a trademark of 3M. GALDEN® is a registered trademark of Solvay Solexis, Inc.

Construction and Principles

Circulating fluid circuit
With the circulating pump, circulating fluid will be discharged to the customer's machine side. After the circulating fluid will heat or cool the customer's machine side, it will be returned to the main tank via the heat exchanger.
When the automatic circulating fluid recovery function, which recovers the circulating fluid from the customer's machine, is selected (refer to page 99), a sub-tank for recovery is installed. The internal pump is used to transfer a circulating fluid from the sub-tank to the main tank.

Facility water circuit
When the circulating fluid temperature rises higher than the set temperature, open the solenoid valve to introduce facility water to the heat exchanger.
When the circulating fluid temperature falls back below the set temperature, close the solenoid valve to shut off facility water to the heat exchanger.
Application Examples

Semiconductor
- Example: Temperature control of chamber electrode
 - Upper electrode
 - Wafer
 - Lower electrode
- Etching equipment
- Spatter equipment
- Cleaning equipment
- Coating equipment
- Dicing equipment
- Tester, etc.

Medical
- Example: Blood preservation
- X-ray instrument
- MRI
- Blood preservation equipment

Food
- Example: Tofu (Bean curd) production
 - Bottle-cleaning machine
 - Tofu (Bean curd) production equipment
 - Noodle-making machine, etc.
 - Water temperature control for forming tofu by mixing the boiled soybean milk and bitter

Analysis
- Example: Electronic microscope
 - Electron microscope
 - X-ray analytical instrument
 - Gas chromatography
 - Sugar level analytical instrument, etc.
 - Prevents the distortion caused by the heat generated by the electron gun in an electronic microscope.

Machine tool
- Example: Laser machining
 - Wire cutting
 - Grinder
 - Spot welding
 - Plasma welding
 - Laser machining, etc.
 - Temperature-controlling the laser generating tube enables the laser wavelength to be optimised, improving the accuracy of the machined cross sectional area.

Printing
- Example: Printing temperature control
 - Offset printing machine
 - Automatic developing machine
 - UV equipment, etc.
 - Temperature-controlling the ink roller enables to control the evaporation amount and viscosity of an ink and optimise the tint of colors.

Molding
- Example: Injection molding
 - Plastic molding
 - Rubber molding
 - Wire cable coating machine
 - Injection molding, etc.
 - Temperature-controlling the mold results in improved product quality.
Model Selection
- Guide to Model Selection Page 104
- Required Cooling Capacity Calculation........ Page 105, 106
- Precautions on Model Selection Page 106
- Circulating Fluid Typical Physical
 Property Values ... Page 107

● Fluorinated Fluid Type
 How to Order/Specifications Page 108
 Cooling Capacity/Heating Capacity/
 Pump Capacity .. Page 109

● Ethylene Glycol Type
 How to Order/Specifications Page 110
 Cooling Capacity/Heating Capacity/
 Pumping Capacity .. Page 111

● Clear/Deionized Water Type
 How to Order/Specifications Page 112
 Cooling Capacity/Heating Capacity/
 Pumping Capacity .. Page 113

● Common Specifications
 Dimensions ... Page 114
 Communication Function Page 115
 • Contact Input/Output Page 115
 • Serial RS-485 .. Page 116
 • Connector Location Page 116
 Operation Panel Display Page 117
 Alarm ... Page 117

● Options
 • Analog Communication Page 118
 • DeviceNet Communication Page 118
 • NPT Fitting .. Page 118
 • DI Control Kit .. Page 118
 • Circulating Fluid Automatic Recovery Page 119

● Optional Accessories
 • By-pass Piping Set Page 120
 • Anti-quake Bracket Page 120
 • 4-Port Manifold ... Page 121
 • DI Filter .. Page 121
 • Insulating Material for DI Filter Page 121
 • Contaminant Filter Page 122
 • 60% Ethylene Glycol Aqueous
 Solution ... Page 122
 • Concentration Meter Page 122
 Specific Product Precautions Page 123 to 125
Guide to Model Selection

1. How much is the temperature in degrees centigrade for the circulating fluid?

Temperature range which can be set with the Thermo-chiller
H: 68 to 195°F (20°C to 90°C)

Example) Customer requirement: 122°F (50°C)

2. What kind of the circulating fluids will be used?

Relationship between circulating fluid (which can be used with the Thermo-chiller) and temperature

- Fluorinated fluids: Fluorinert™ FC-40/GALDEN® HT200
- 60% ethylene glycol aqueous solution
- Clear water/Deionized water

Example) Customer requirement: Clear water

3. How much is the temperature in degrees centigrade for the facility water?

Temperature range which can be set with the Thermo-chiller
10°C to 35°C

Example) Facility water temperature of customer’s machine: 15°C
Temperature difference between the circulating fluid and facility water is: 50 – 15 = 95°F (35°C).

4. What is the kW for the required cooling capacity?

Example) Customer requirement: 20 kW
Plot the point where the temperature difference between the circulating fluid and facility water (95°F (35°C)) intersects the cooling capacity (20 kW) in the cooling capacity graph.

[Cooling Capacity Graph] Circulating Fluid: Clear Water/Deionized Water

The point plotted in the graph is the requirement from your customer. Select the Thermo-chiller models exceeding this point. In this case, select the HRW030-H2.
Required Cooling Capacity Calculation

Example 1: When the heat generation amount in the customer’s machine is known.

Heat generation amount Q: 3.5 kW

Cooling capacity = Considering a safety factor of 20%, $3.5 \times 1.2 = \boxed{4.2 \text{ kW}}$

Example 2: When the heat generation amount in the customer’s machine is not known.

Obtain the temperature difference between inlet and outlet by circulating the circulating fluid inside the customer’s machine.

- Heat generation amount Q: Unknown
- Circulating fluid temperature difference $\Delta T = T_2 - T_1$: 6.0°C (6.0 K)
- Circulating fluid outlet temperature T_1: 20°C (293.15 K)
- Circulating fluid return temperature T_2: 26°C (299.15 K)
- Circulating fluid flow rate L: 20 L/min
- Circulating fluid
 - Density γ: 1.80 x 10³ kg/m³
 - Specific heat C: 0.96 x 10³ J/(kg·K)

$\Delta T = 26°C - 20°C = 6°C$

$Q = \frac{\Delta T \times L \times \gamma \times C}{860}$

$= \frac{6.0 \times 20 \times 1.80 \times 10^3 \times 0.96 \times 10^3}{60 \times 1000}$

$= \frac{3456 \text{ W}}{3.5 \text{ kW}}$

Cooling capacity = Considering a safety factor of 20%, $3.5 \times 1.2 = \boxed{4.2 \text{ kW}}$

* Refer to page 107 for the typical physical property values by circulating fluid.

Example of conventional measurement units (Reference)

- Unknown
- 6.0°C
- 20°C
- 26°C
- 1.2 m³/h
- Fluorinated fluid
- Density γ: 1.80 x 10³ kg/m³
- Specific heat C: 0.23 kcal/kg·°C (at 20°C)

* Refer to page 107 for the typical physical property values by circulating fluid.

$Q = \frac{\Delta T \times L \times \gamma \times C}{860}$

$= \frac{6.0 \times 1.2 \times 1.80 \times 10^3 \times 0.23}{860}$

$= 3.5 \text{ kW}$

Cooling capacity = Considering a safety factor of 20%, $3.5 \times 1.2 = \boxed{4.2 \text{ kW}}$

Thermo-chiller

T2: Return temperature

$\Delta T = T_2 - T_1$

L

Customer’s machine

T1: Outlet temperature
Example 3. When there is no heat generation, and when cooling the object below a certain temperature and period of time.

Cooled substance total volume \(V \) : 60 L
Cooling time \(h \) : 15 min
Cooling temperature difference \(\Delta T \) : 20°C (20 K) (70°C – 50°C → 20°C)
Facility water temperature : 20°C (293.15 K)
Circulating fluid : Fluorinated fluid
Density \(\gamma \) : 1.74 x 10³ kg/m³
Specific heat \(C \) : 1.05 x 10³ J/(kg·K)
(at 50°C)

\[Q = \frac{\Delta T \times V \times \gamma \times C}{h \times 60 \times 1000} \]
\[= \frac{20 \times 60 \times 1.74 \times 10^3 \times 1.05 \times 10^3}{15 \times 60 \times 1000} \]
\[= 2436 \text{ W} = 2.4 \text{ kW} \]

Cooling capacity = Considering a safety factor of 20%,
\[2.4 \times 1.2 = 2.9 \text{ kW} \text{ (When the circulating fluid temperature is 50°C.)} \]

(In this case, selected Thermo-chiller model will be the HRW008-H.)

```
Thermo-chiller
```

```
Water bath
```

```
50°C
```

```
V
```

After 15 min, cool 70°C down to 50°C.

Example of conventional measurement units (Reference)
0.06 m³
0.25 h
20°C
20°C
Fluorinated fluid
Density \(\gamma \) : 1.74 x 10³ kg/m³
Specific heat \(C \) : 0.25 kcal/kg·°C
(at 50°C)

\[Q = \frac{\Delta T \times V \times \gamma \times C}{h \times 860} \]
\[= \frac{20 \times 0.06 \times 1.74 \times 10^3 \times 0.25}{0.25 \times 860} \]
\[= 2.4 \text{ kW} \]

Cooling capacity = Considering a safety factor of 20%,
\[2.4 \times 1.2 = 2.9 \text{ kW} \text{ (When the circulating fluid temperature is 50°C.)} \]

(In this case, selected Thermo-chiller model will be the HRW008-H.)

```
Note) This is the calculated value by changing the fluid temperature only. 
Thus, it varies substantially depending on the water bath or piping material or shape.
```

Precautions on Model Selection

1. **Temperature difference between the circulating fluid and facility water**

 The HRW series exchanges heat between the circulating fluid and facility water directly, so it may not be possible to lower the circulating fluid temperature to the set temperature if the facility water temperature is too high. Check that the facility water temperature can be maintained for the circulating fluid temperature referring to the cooling capacity graph of each model before using.

2. **Heating capacity**

 When setting the circulating fluid temperature at a higher temperature than the room temperature, the circulating fluid temperature will be heated with the Thermo-chiller. Heating capacity varies depending on the circulating fluid temperature. Also, the heating capacity varies depending on the circulating fluid temperature. Consider the heat radiation amount or thermal capacity of the customer's equipment. Check beforehand if the required heating capacity is provided, based on the heating capacity graph for the respective model.

3. **Pump capacity**

 <Circulating fluid flow rate>

 Pump capacity varies depending on the model selected from the HRW series. Also, circulating fluid flow varies depending on the circulating fluid discharge pressure. Consider the installation height difference between our Thermo-chiller and a customer's machine, and the piping resistance such as circulating fluid pipings, or piping size, or piping curves in the machine. Check beforehand if the required flow rate is achieved, using the pump capacity curves for each respective model.

 <Circulating fluid discharge pressure>

 Circulating fluid discharge pressure has the possibility to increase up to the maximum pressure in the pump capacity curves for the respective model. Check beforehand if the circulating fluid pipings or circulating fluid circuit of the customer's machine are fully durable against this pressure.
Circulating Fluid Typical Physical Property Values

Fluorinated Fluids

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Density γ [kg/m3] [g/L]</th>
<th>Specific heat C [J/(kg·K)]</th>
<th>([kcal/kg·°C])</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10°C</td>
<td>1.87 x 103</td>
<td>0.87 x 103</td>
<td>0.21</td>
</tr>
<tr>
<td>20°C</td>
<td>1.80 x 103</td>
<td>0.96 x 103</td>
<td>0.23</td>
</tr>
<tr>
<td>50°C</td>
<td>1.74 x 103</td>
<td>1.05 x 103</td>
<td>0.25</td>
</tr>
<tr>
<td>80°C</td>
<td>1.67 x 103</td>
<td>1.14 x 103</td>
<td>0.27</td>
</tr>
</tbody>
</table>

60% Ethylene Glycol Aqueous Solution

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Density γ [kg/m3] [g/L]</th>
<th>Specific heat C [J/(kg·K)]</th>
<th>([kcal/kg·°C])</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10°C</td>
<td>1.10 x 103</td>
<td>3.02 x 103</td>
<td>0.72</td>
</tr>
<tr>
<td>20°C</td>
<td>1.08 x 103</td>
<td>3.15 x 103</td>
<td>0.75</td>
</tr>
<tr>
<td>50°C</td>
<td>1.06 x 103</td>
<td>3.27 x 103</td>
<td>0.78</td>
</tr>
<tr>
<td>80°C</td>
<td>1.04 x 103</td>
<td>3.40 x 103</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Water

Density γ: 1 x 103 [kg/m3] [g/L]
Specific heat C: 4.2 x 103 [J/(kg·K)] (1.0 [kcal/kg·°C])
Specifications

Thermo-chiller Series HRW

Fluorinated Fluid Type

How to Order

Fluorinated Fluid Type HRW

Cooling capacity

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cooling capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>2 kW</td>
</tr>
<tr>
<td>008</td>
<td>8 kW</td>
</tr>
<tr>
<td>015</td>
<td>15 kW</td>
</tr>
<tr>
<td>030</td>
<td>30 kW</td>
</tr>
</tbody>
</table>

Temperature range setting

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Temperature range setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>68 to 194°F (20 to 90°C)</td>
</tr>
</tbody>
</table>

Option

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>None</td>
</tr>
<tr>
<td>C</td>
<td>Analog communication</td>
</tr>
<tr>
<td>D</td>
<td>DeviceNet communication</td>
</tr>
<tr>
<td>N</td>
<td>NPT fitting</td>
</tr>
<tr>
<td>Z</td>
<td>Circulating fluid automatic recovery</td>
</tr>
</tbody>
</table>

Pump inverter control

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pump inverter control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>None</td>
</tr>
<tr>
<td>S</td>
<td>Applicable (pump inverter type)</td>
</tr>
</tbody>
</table>

Specifications (For details, please consult our “Product Specifications” information.)

<table>
<thead>
<tr>
<th>Model</th>
<th>HRW002-H</th>
<th>HRW006-H</th>
<th>HRW015-H</th>
<th>HRW030-H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HRW002-HS</td>
<td>HRW006-HS</td>
<td>HRW015-HS</td>
<td>HRW030-HS</td>
</tr>
<tr>
<td>Cooling method</td>
<td>Water-cooled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature/humidity</td>
<td>Temperature: 50 to 95°F (10 to 35°C), Humidity: 30 to 70%RH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range setting</td>
<td>Fluorinert™ FC-40/GALDEN® HT200</td>
<td>68 to 194°F (20 to 90°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling capacity (50/60 Hz common) (kW)</td>
<td>2</td>
<td>8</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>Circulating fluid temperature</td>
<td>Facility water temperature +27°F (15°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility water temperature</td>
<td>50 to 95°F (10 to 35°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid rated flow</td>
<td>1.1 gpm (4 L/min)</td>
<td>7.9 gpm (30 L/min)</td>
<td>10.6 gpm (40 L/min)</td>
<td>10.6 gpm (40 L/min)</td>
</tr>
<tr>
<td>Facility water required flow rate</td>
<td>2.6 gpm (10 L/min)</td>
<td>5.3 gpm (20 L/min)</td>
<td>6.6 gpm (25 L/min)</td>
<td>10.6 gpm (40 L/min)</td>
</tr>
<tr>
<td>Temperature stability</td>
<td>±0.54°F (±0.3°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump capacity</td>
<td>0.40/0.60 (at 4 L/min)</td>
<td>0.45/0.65 (at 30 L/min)</td>
<td>0.40/0.60 (at 40 L/min)</td>
<td>0.40/0.60 (at 40 L/min)</td>
</tr>
<tr>
<td>Circulating fluid flow range</td>
<td>0.8 to 4.2 gpm (3 to 16 L/min)</td>
<td></td>
<td>2.4 to 13.2 gpm (9 to 50 L/min)</td>
<td></td>
</tr>
<tr>
<td>Tank capacity</td>
<td>Approx. 3.4 gal (13 L)</td>
<td>Approx. 3.7 gal (14 L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td>Rc3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted parts material</td>
<td>Copper brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluororesin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range</td>
<td>50 to 95°F (10 to 35°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required flow rate</td>
<td>2.6 gpm (10 L/min)</td>
<td>5.3 gpm (20 L/min)</td>
<td>6.6 gpm (25 L/min)</td>
<td>10.6 gpm (40 L/min)</td>
</tr>
<tr>
<td>Inlet pressure range</td>
<td>44 to 102 psi (0.3 to 0.7 MPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td>Rc3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted parts material</td>
<td>Copper brazing (Heat exchanger), Stainless steel, EPDM, Silicone, Bronze, Brass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>3-phase 200/200 to 208 VAC ±10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. operating current</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breaker capacity</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>Serial RS-485 (D-sub 9 pin) and Contact input/output (D-sub 25 pin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>W15 in (380mm) x D26.2 in (665mm) x H33.9 in (860mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 198 lbs (90 kg)</td>
<td>Approx. 220 lbs (100 kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety standards</td>
<td>UL, CE marking, SEMI (S2-0703, S8-1103, F47-0200), SEMATECH (S2-93, S8-95)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. It should have no condensation.
2. Fluoorinet™ is a trademark of 3M and GALDEN® is a registered trademark of Solvay Solexis, Inc. Regarding the fluid other than the above, please contact SMC.
3. Outlet temperature when the circulating fluid and facility water are rated flow, and the circulating fluid outlet and return port are directly connected. Installation environment, power supply, and facility water are within specification range and stable. Value obtained 10 minutes after the external load is stabilized. It may be out of ±0.54°F (±0.3°C) in some other operating conditions.
4. The capacity at the circulating fluid outlet when the circulating fluid temperature is 68°F (20°C). Pump capacity at 60 Hz indicates the maximum capacity of the HRW/HRW-HS (pump inverter type).
5. Applicable to the HRW/HRW-HS (pump inverter type) only.
6. Minimum volume required for operating only the Thermo-chiller. (Circulating fluid temperature: 68°F (20°C), including the Thermo-chiller's internal piping or heat exchanger)
7. The automatic circulating fluid recovering function will be provided by selecting option Z for collecting the circulating fluid inside an external piping.
8. Required flow rate for cooling capacity or maintaining the temperature stability.
9. Panel dimensions. These dimensions do not include possible protrusions such as a breaker handle.
10. Weight in the dry state without circulating fluids.

Note 1) It should have no condensation.
Note 2) Fluoorinet™ is a trademark of 3M and GALDEN® is a registered trademark of Solvay Solexis, Inc. Regarding the fluid other than the above, please contact SMC.
Note 3) Outlet temperature when the circulating fluid and facility water are rated flow, and the circulating fluid outlet and return port are directly connected. Installation environment, power supply, and facility water are within specification range and stable. Value obtained 10 minutes after the external load is stabilized. It may be out of ±0.54°F (±0.3°C) in some other operating conditions.
Note 4) The capacity at the circulating fluid outlet when the circulating fluid temperature is 68°F (20°C). Pump capacity at 60 Hz indicates the maximum capacity of the HRW/HRW-HS (pump inverter type).
Cooling Capacity

HRW002-H

HRW002-HS/008-HS/015-HS/030-HS

Heating Capacity

HRW002-H

HRW002-HS/008-HS/015-HS/030-HS

Pump Capacity

HRW002-H

HRW002-HS

<table>
<thead>
<tr>
<th>Flow rate (L/min)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 gpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulating fluid pressure (psi)</td>
<td>145</td>
<td>130</td>
<td>115</td>
<td>100</td>
<td>85</td>
<td>70</td>
</tr>
</tbody>
</table>

HRW008-H/015-H/030-H

HRW008-HS/015-HS/030-HS

<table>
<thead>
<tr>
<th>Flow rate (L/min)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet pressure [50 Hz]</td>
<td>145</td>
<td>130</td>
<td>115</td>
<td>100</td>
<td>85</td>
<td>70</td>
<td>55</td>
<td>40</td>
<td>25</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Outlet pressure [60 Hz]</td>
<td>145</td>
<td>130</td>
<td>115</td>
<td>100</td>
<td>85</td>
<td>70</td>
<td>55</td>
<td>40</td>
<td>25</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

- *If the circulating fluid flow drops below 0.53 gpm (2 L/min), the shutdown alarm activates and operation stops. Do not use the product when the flow exceeds 4.23 gpm (16 L/min), since the flow cannot be displayed accurately.*
- *Pump capacity at 60 Hz indicates the maximum capacity of the HRW002-HS (pump inverter type).*
- *When pump inverter is operating at frequency of 60 Hz (maximum).*
- *If the circulating fluid flow drops below 2.1 gpm (8 L/min), the shutdown alarm activates and operation stops. Do not use the product when the flow exceeds 13.2 gpm (50 L/min), since the flow cannot be displayed accurately.*
- *Pump capacity at 60 Hz indicates the maximum capacity of the HRW008-HS/015-HS/030-HS (pump inverter type).*

Specifications

(For details, please consult our “Product Specifications” information.)

Ethylene Glycol Type

HRW 002 - H 1 -

Option

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>None</td>
</tr>
<tr>
<td>C</td>
<td>Analog communication</td>
</tr>
<tr>
<td>D</td>
<td>DeviceNet communication</td>
</tr>
<tr>
<td>N</td>
<td>NPT fitting</td>
</tr>
<tr>
<td>Y</td>
<td>DI control kit</td>
</tr>
<tr>
<td>Z</td>
<td>Circulating fluid automatic recovery</td>
</tr>
</tbody>
</table>

Circulating fluid control

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pump inverter control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>None</td>
</tr>
<tr>
<td>S</td>
<td>Applicable (Pump inverter type)</td>
</tr>
</tbody>
</table>

Ethylene glycol type

Cooling capacity

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cooling capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>2 kW</td>
</tr>
<tr>
<td>008</td>
<td>8 kW</td>
</tr>
<tr>
<td>015</td>
<td>15 kW</td>
</tr>
<tr>
<td>030</td>
<td>30 kW</td>
</tr>
</tbody>
</table>

Temperature range setting

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Temperature range setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>68 to 194°F (20 to 90°C)</td>
</tr>
</tbody>
</table>

Model

<table>
<thead>
<tr>
<th>Model</th>
<th>HRW002-H1</th>
<th>HRW002-H1S</th>
<th>HRW008-H1</th>
<th>HRW008-H1S</th>
<th>HRW015-H1</th>
<th>HRW015-H1S</th>
<th>HRW030-H1</th>
<th>HRW030-H1S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling method</td>
<td>Water-cooled</td>
<td>60% ethylene glycol aqueous solution</td>
<td>68 to 194°F (20 to 90°C)</td>
<td>2 kW</td>
<td>8 kW</td>
<td>15 kW</td>
<td>30 kW</td>
<td>0.35/0.55 (at 4 L/min</td>
</tr>
<tr>
<td>Conditions</td>
<td>Circulating fluid temperature</td>
<td>Facility water temperature</td>
<td>Circulating fluid rated flow</td>
<td>Facility water required flow rate</td>
<td>Temperature stability</td>
<td>Pump capacity (50/60 Hz)</td>
<td>Circulating fluid flow rate</td>
<td>Tank capacity</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>50 to 95°F (10 to 35°C)</td>
<td>+27°F (15°C)</td>
<td>1.1 gpm (4 L/min)</td>
<td>0.35/0.55 (at 4 L/min</td>
<td>±0.5°F (±0.3°C)</td>
<td>0.35/0.55 (at 40 L/min</td>
<td>2.6 gpm (10 L/min)</td>
<td>0.8 to 4.2 gpm (3 to 16 L/min</td>
</tr>
</tbody>
</table>

Notes

1. It should have no condensation.
2. Dilute pure ethylene glycol with clear water. Additives invading wetting parts material such as preservatives cannot be used.
3. Outlet temperature when the circulating fluid and facility water are rated flow, and the circulating fluid outlet and return port are directly connected. Installation environment, power supply, and facility water are within specification range and stable. Value obtained 10 minutes after the external load is stabilized (after stabilization with no load for HRW030-H1). It may be out of this range when a DI control kit (option Y) is used or in some other operating conditions.

Specifications

- **Cooling method**: Water-cooled
- **Ambient temperature/humidity**: Temperature: 50 to 95°F (10 to 35°C), Humidity: 30 to 70%RH
- **Circulating fluid**: 60% ethylene glycol aqueous solution
- **Temperature range setting**: 68 to 194°F (20 to 90°C)
- **Cooling capacity (50/60 Hz common) (kW)**: 2 kW, 8 kW, 15 kW, 30 kW
- **Temperature stability**: ±0.5°F (±0.3°C)
- **Circulating fluid flow**: 0.8 to 4.2 gpm (3 to 16 L/min)
- **Tank capacity**: Approx. 3.4 gal (13 L)
- **Port size**: Rc3/4
- **Wetted parts material**: Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluororesin
- **Temperature range**: 50 to 95°F (10 to 35°C)
- **Required flow rate**: 2.6 gpm (10 L/min)
- **Power supply**: 3-phase 200/200 to 208 VAC ±10%
- **Max. operating current (A)**: 26
- **Breaker capacity (A)**: 30
- **Communications**: Serial RS-485 (D-sub 9 pin) and Contact input/output (D-sub 25 pin)
- **Dimensions**: W15 in (380mm) x D 26.2 in (665mm) x H33.9 in (860mm)
- **Weight (dry state)**: Approx. 198 lbs (90 kg)
- **Safety standards**: U.L., CE marking, SEMI (S2-0703, S8-1103, F47-0200), SEMATECH (S2-93, S8-95)
Cooling Capacity

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW002-H1/008-H1</td>
<td>50-170</td>
</tr>
<tr>
<td>HRW002-H1S/008-H1S</td>
<td>50-170</td>
</tr>
</tbody>
</table>

Heating Capacity

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW002-H1/008-H1</td>
<td>50-170</td>
</tr>
<tr>
<td>HRW002-H1S/008-H1S</td>
<td>50-170</td>
</tr>
</tbody>
</table>

Pump Capacity

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Circulating fluid</th>
<th>Flow rate (L/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW002-H1</td>
<td>60% ethylene glycol</td>
<td>0-5</td>
</tr>
<tr>
<td>HRW002-H1S</td>
<td>60% ethylene glycol</td>
<td>0-5</td>
</tr>
</tbody>
</table>

* If the circulating fluid flow drops below 0.53 gpm (2 L/min), the shutdown alarm activates and operation stops. Do not use the product when the flow exceeds 4.23 gpm (16 L/min), since the flow cannot be displayed accurately.

* Pump capacity at 60 Hz indicates the maximum capacity of the HRW002-H1S (pump inverter type).
Specifications (For details, please consult our “Product Specifications” information.)

<table>
<thead>
<tr>
<th>Model</th>
<th>HRW002-H2</th>
<th>HRW008-H2</th>
<th>HRW015-H2</th>
<th>HRW030-H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling method</td>
<td>Water-cooled</td>
<td>Clear water, Deionized water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature/humidity</td>
<td>Temperature: 50 to 95°F (10 to 35°C), Humidity: 30 to 70%RH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range setting (Note 2)</td>
<td>68 to 194°F (20 to 90°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling capacity (50/60 Hz common) (kW)</td>
<td>2</td>
<td>8</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Circulating fluid temperature</td>
<td>Facility water temperature +27°F (15°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid rated flow</td>
<td>1.1 gpm (4 L/min)</td>
<td>4.0 gpm (15 L/min)</td>
<td>7.9 gpm (30 L/min)</td>
<td>10.6 gpm (40 L/min)</td>
</tr>
<tr>
<td>Facility water temperature</td>
<td>50 to 95°C (10 to 35°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid required flow rate</td>
<td>2.6 gpm (10 L/min)</td>
<td>4.0 gpm (15 L/min)</td>
<td>6.6 gpm (25 L/min)</td>
<td>10.6 gpm (40 L/min)</td>
</tr>
<tr>
<td>Temperature stability (Note 5)</td>
<td>±0.54°F (±0.3°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump capacity (50/60 Hz)</td>
<td>0.35/0.55 (at 4 L/min)</td>
<td>0.45/0.65 (at 15 L/min)</td>
<td>0.40/0.60 (at 30 L/min)</td>
<td>0.35/0.55 (at 40 L/min)</td>
</tr>
<tr>
<td>Circulating fluid flow range (Note 5)</td>
<td>0.8 to 4.2 gpm (3 to 16 L/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank capacity (Note 6)</td>
<td>Approx. 3.4 gal (13 L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulating fluid recovery tank volume (Note 7)</td>
<td>3.2 gal (12 L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td>Rc3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted parts material</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, PPS, Fluoro resin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range</td>
<td>50 to 95°F (10 to 35°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required flow rate (Note 8)</td>
<td>2.6 gpm (10 L/min)</td>
<td>4.0 gpm (15 L/min)</td>
<td>6.6 gpm (25 L/min)</td>
<td>10.6 gpm (40 L/min)</td>
</tr>
<tr>
<td>Inlet pressure range</td>
<td>44 to 102 psi (0.3 to 0.7 MPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port size</td>
<td>Rc3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetted parts material</td>
<td>Nickel brazing (Heat exchanger), Stainless steel, EPDM, Silicone, Bronze, Brass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>3-phase 200/200 to 208 VAC ±10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. operating current (A)</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breaker capacity (A)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>Serial RS-485 (D-sub 9 pin) and Contact input/output (D-sub 25 pin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (Note 9)</td>
<td>W15 in (380 mm) x D 26.2 in (665 mm) x H33.9 in (860 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (Note 10)</td>
<td>Approx. 198 lbs (90 kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Safety standards
- UL, CE marking, SEMI (S2-0703, S8-1103, F47-0200), SEMATECH (S2-93, S8-95)

Note 1) It should have no condensation.

Note 2) If clear water or deionized water is used, please use water that conforms to Water Quality Standards of the Japan Refrigeration and Air Conditioning Industry Association (JRA GL-02-1994/cooling water system - circulation type - make-up water). The electrical conductivity of the deionized water used as the fluid varies depending on the operating conditions.

Note 3) Outlet temperature when the circulating fluid and facility water are rated flow, and the circulating fluid outlet and return port are directly connected. Installation environment, power supply, and facility water are within specification range and stable. Value obtained 10 minutes after the external load is stabilized (after stabilization with no load for HRW030-H2). It may be out of this range when a DI control kit (option Y) is used or in some other operating conditions.

Note 4) The capacity at the circulating fluid outlet when the circulating fluid temperature is 68°F (20°C). Pump capacity at 60 Hz indicates the maximum capacity of the HRW002-H2S (pump inverter type).

Note 5) Applicable to the HRW002-H2S (pump inverter type) only.

Note 6) Minimum volume required for operating only the Thermo-chiller. (Circulating fluid temperature: 68°F (20°C), including the Thermo-chiller’s internal piping or heat exchanger).

Note 7) The automatic circulating fluid recovering function will be provided by selecting option Z for collecting the circulating fluid inside an external piping.

Note 8) Required flow rate for cooling capacity or maintaining the temperature stability.

Note 9) Paneldimensions. These dimensions do not include possible protrusions such as a breaker handle.

Note 10) Weight in the dry state without circulating fluids.
Cooling Capacity

<table>
<thead>
<tr>
<th>Temperature difference ΔT (°C)</th>
<th>Heating capacity (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
</tr>
</tbody>
</table>

Circulating fluid pressure (psi)

Outlet pressure [60 Hz]
Return port pressure

Pump Capacity

HRW002-H2
HRW002-H2S

Circulating fluid: Clear water
Circulating fluid temperature: 68°F (20°C)

Flow rate (L/min)

Outlet pressure [60 Hz]
Outlet pressure [50 Hz]

HRW008-H2/015-H2/030-H2
HRW008-H2S/015-H2S/030-H2S

Circulating fluid: Clear water
Circulating fluid temperature: 68°F (20°C)

Flow rate (L/min)

Outlet pressure [60 Hz]
Outlet pressure [50 Hz]

If the circulating fluid flow drops below 0.53 gpm (2 L/min), the shutdown alarm activates and operation stops. Do not use the product when the flow exceeds 4.23 gpm (16 L/min), since the flow cannot be displayed accurately.

If the circulating fluid flow drops below 2.1 gpm (8 L/min), the shutdown alarm activates and operation stops. Do not use the product when the flow exceeds 13.2 gpm (50 L/min), since the flow cannot be displayed accurately.

Pump capacity at 60 Hz indicates the maximum capacity of the HRW002-H2S (pump inverter type).
Series HRW

Common Specifications

Dimensions

Table:

<table>
<thead>
<tr>
<th>Model</th>
<th>Fluorinated fluid type</th>
<th>Ethylene glycol type</th>
<th>Clear/Deionized water type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW002-H</td>
<td>HRW002-H1</td>
<td>HRW002-H2</td>
<td>15 (380)</td>
<td>26.2</td>
<td>33.9</td>
<td>ø0.7 x 0.81</td>
<td></td>
</tr>
<tr>
<td>HRW008-H</td>
<td>HRW008-H1</td>
<td>HRW008-H2</td>
<td>16 (380)</td>
<td>26.2</td>
<td>33.9</td>
<td>ø0.7 x 0.81</td>
<td></td>
</tr>
<tr>
<td>HRW015-H</td>
<td>HRW015-H1</td>
<td>HRW015-H2</td>
<td>16 (380)</td>
<td>26.2</td>
<td>33.9</td>
<td>ø0.7 x 0.81</td>
<td></td>
</tr>
<tr>
<td>HRW030-H</td>
<td>HRW030-H1</td>
<td>HRW030-H2</td>
<td>16 (380)</td>
<td>26.2</td>
<td>33.9</td>
<td>ø0.7 x 0.81</td>
<td></td>
</tr>
</tbody>
</table>

Note: Only when the DI control kit (option Y) is selected.
Communication Function

(For details, please consult our “Communication Specifications” information.)

Contact Input/Output

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector no.</td>
<td>P1</td>
</tr>
<tr>
<td>Connector type (on this product side)</td>
<td>D-sub 25 P type, Female connector</td>
</tr>
<tr>
<td>Fixing bolt size</td>
<td>M2.6 x 0.45</td>
</tr>
</tbody>
</table>

Input signal

- **Insulation method**: Photocoupler
- **Rated input voltage**: 24 VDC
- **Operating voltage range**: 21.6 to 26.4 VDC
- **Rated input current**: 5 mA TYP
- **Input impedance**: 4.7 kΩ

Output signal

- **Rated load voltage**: 48 VAC or less/30 VDC or less
- **Maximum load current (total)**: When using the power supply of the Thermo-chiller: 200 mA DC (resistance load/inductive load)
 When using the power supply of the customer's machine: 800 mA AC/DC (resistance load/inductive load)

Alarm signal

- **Rated load voltage**: 48 VAC or less/30 VDC or less
- **Maximum load current**: 800 mA AC/DC (resistance load/inductive load)

EMO signal

- **Rated load voltage**: 48 VAC or less/30 VDC or less
- **Maximum load current**: 800 mA AC/DC (resistance load/inductive load)

Note: The custom function is equipped for contact input/output. Using the custom function enables the customer to set the signal type for contact input/output or pin assignment numbers. For details, please consult “Communication Specifications” information.

Circuit diagram

[Diagram showing pin assignment and signal flow]

Technical Data

Related Products
Serial RS-485
The serial RS-485 enables the following items to be written and read out.

<Writing>
- Run/Stop
- Circulating fluid temperature setting
- Circulating fluid automatic recovery start/stop\(^1\)

<Readout>
- Circulating fluid present temperature
- Circulating fluid flow
- Circulating fluid discharge pressure
- Circulating fluid electrical resistivity\(^2\)
- Alarm occurrence information
- Status (operating condition) information

\(^1\) Only when the circulating fluid automatic recovery function (option Z) is selected.
\(^2\) Only when the DI control kit (option Y) is selected.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector no.</td>
<td>P2</td>
</tr>
<tr>
<td>Connector type (on this product side)</td>
<td>D-sub 9 P type, Female connector</td>
</tr>
<tr>
<td>Fixing bolt size</td>
<td>M2.6 x 0.45</td>
</tr>
<tr>
<td>Standards</td>
<td>EIA RS485</td>
</tr>
<tr>
<td>Protocol</td>
<td>Modicon Modbus</td>
</tr>
</tbody>
</table>

![Circuit diagram]

Connector location
- **P3**: Not used for the maintenance purpose port
 - D-sub 9 (Male receptacle)
- **P2**: Serial RS-485
 - D-sub 9 (Female receptacle)
- **P1**: Contact input/output
 - D-sub 25 (Female receptacle)
- Power cable entry
Operation Display Panel

![Operation Display Panel Diagram]

Alarm

This unit can display 23 kinds of alarm messages as standard. Also, it can read out the serial RS-485 communication.

<table>
<thead>
<tr>
<th>Alarm code</th>
<th>Alarm message</th>
<th>Operation status</th>
<th>Main reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Water Leak Detect FLT</td>
<td>Stop</td>
<td>Liquid deposits in the drain pan of this unit.</td>
</tr>
<tr>
<td>02</td>
<td>Incorrect Phase Error FLT</td>
<td>Stop</td>
<td>The power supply to this unit is incorrect.</td>
</tr>
<tr>
<td>05</td>
<td>Reservoir Low Level FLT</td>
<td>Stop</td>
<td>The amount of circulating fluid tank is running low.</td>
</tr>
<tr>
<td>06</td>
<td>Reservoir Low Level WRN</td>
<td>Continue</td>
<td>The amount of circulating fluid tank is running low.</td>
</tr>
<tr>
<td>07</td>
<td>Reservoir High Level WRN</td>
<td>Continue</td>
<td>The amount of circulating fluid in the tank has increased.</td>
</tr>
<tr>
<td>08</td>
<td>Temp. Fuse Cutout FLT</td>
<td>Stop</td>
<td>Temperature of the circulating fluid tank is raised.</td>
</tr>
<tr>
<td>09</td>
<td>Reservoir High Temp. FLT</td>
<td>Stop</td>
<td>Temperature of the circulating fluid has exceeded the limitation.</td>
</tr>
<tr>
<td>10</td>
<td>Return High Temp. WRN</td>
<td>Continue</td>
<td>Temperature of returning circulating fluid has exceeded the limit.</td>
</tr>
<tr>
<td>11</td>
<td>Reservoir High Temp. WRN</td>
<td>Continue</td>
<td>Temperature of the circulating fluid has exceeded the limitation set by the customer.</td>
</tr>
<tr>
<td>12</td>
<td>Return Low Flow WRN</td>
<td>Stop</td>
<td>The circulating fluid flow has gone below the limit.</td>
</tr>
<tr>
<td>13</td>
<td>Return Low Flow WRN</td>
<td>Continue</td>
<td>Flow rate of the Thermo-chiller has dropped below the set value.</td>
</tr>
<tr>
<td>15</td>
<td>Pump Breaker Trip FLT</td>
<td>Stop</td>
<td>The protective equipment in the circulating fluid driving line has started.</td>
</tr>
<tr>
<td>17</td>
<td>Interlock Fuse Cutout FLT</td>
<td>Stop</td>
<td>Overcurrent is flown to the control circuit.</td>
</tr>
<tr>
<td>18</td>
<td>DC Power Fuse Cutout WRN</td>
<td>Continue</td>
<td>Overcurrent has flowed to the (optional) solenoid valve.</td>
</tr>
<tr>
<td>19</td>
<td>FAN Motor Stop WRN</td>
<td>Continue</td>
<td>Cooling fan inside the compressor has stopped.</td>
</tr>
<tr>
<td>21</td>
<td>Controller Error FLT</td>
<td>Stop</td>
<td>The error occurred in the control systems.</td>
</tr>
<tr>
<td>22</td>
<td>Memory Data Error FLT</td>
<td>Stop</td>
<td>The data stored in the controller of this unit went wrong.</td>
</tr>
<tr>
<td>23</td>
<td>Communication Error WRN</td>
<td>Continue</td>
<td>The serial communications between this unit and customer's system has been suspended.</td>
</tr>
<tr>
<td>24</td>
<td>DI Low Level WRN</td>
<td>Continue</td>
<td>DI level of the circulating fluid has gone below the limitation set by the customer. (Only for DI control kit - option Y)</td>
</tr>
<tr>
<td>25</td>
<td>Pump Inverter Error FLT</td>
<td>Stop</td>
<td>The error occurred in the circulating pump inverter. This alarm is applicable to the HRW/-H/-H/-S only.</td>
</tr>
<tr>
<td>26</td>
<td>DNET Comm. Error FLT</td>
<td>Stop</td>
<td>The DeviceNet communications between this unit and customer's system has been suspended. (Only for DeviceNet communication specification - option D)</td>
</tr>
<tr>
<td>27</td>
<td>DNET Comm. Error WRN</td>
<td>Continue</td>
<td>An error has occurred in the DeviceNet communication system of this unit. (Only for DeviceNet communication specification - option D)</td>
</tr>
<tr>
<td>29</td>
<td>F.Water Low Temp. WRN</td>
<td>Continue</td>
<td>Temperature of facility water has dropped below the set temperature.</td>
</tr>
<tr>
<td>30</td>
<td>F.Water High Temp. WRN</td>
<td>Continue</td>
<td>Temperature of facility water has exceeded the set temperature.</td>
</tr>
</tbody>
</table>
Series HRW Options

C Option symbol

Analog Communication

HRW [] – [] – C

Analog communication

In addition to the standard contact input/output signal communication and the serial RS-485 communication, analog communication function can be added. The analog communication function enables to write and read out the following items.

<Writing>
- Circulating fluid temperature
- Circulating fluid present temperature setting

<Readout>
- Circulating fluid present temperature
- Electrical resistivity

* Only when the DI control kit (option Y) is selected.

Scaling voltage - circulating fluid temperature can be set arbitrarily by the customer.

For details, please consult our "Communication Specifications" information.

D Option symbol

DeviceNet Communication

HRW [] – [] – D

DeviceNet communication

In addition to the standard contact input/output signal communication and the serial RS-485 communication, DeviceNet function can be added. DeviceNet function enables to write and read out the following items.

<Writing>
- Run/Stop
- Circulating fluid temperature setting
- Circulating fluid automatic recovery start/stop

<Readout>
- Circulating fluid present temperature
- Circulating fluid flow
- Circulating fluid discharge pressure
- Electrical resistivity
- Alarm occurrence information
- Status (operating condition) information

* Only when the circulating fluid automatic recovery function (option Z) is selected.

* Only when the DI control kit (option Y) is selected.

For details, please consult our "Communication Specifications" information.

N Option symbol

NPT Fitting

HRW [] – [] – N

NPT fitting

An adapter is included to change the connection parts of circulating fluid piping and facility water piping to NPT thread type. The adapter must be installed by the customer.

Y Option symbol

DI Control Kit

HRW [] – [] – Y

DI control kit

Select this option if you want to maintain the electrical resistivity (DI level) of the circulating fluid at a certain level. However, some components have to be fitted by customer. For details, refer to specification table for this option.

Please note that this is not applicable to the fluorinated liquid type.

Note

Options have to be selected when ordering the Thermo-chiller. It is not possible to add them after purchasing the unit.

Applicable model

<table>
<thead>
<tr>
<th>HRW0[]–H1-Y</th>
<th>HRW0[]–H2-Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable circulating fluid</td>
<td>60% ethylene glycol aqueous solution</td>
</tr>
<tr>
<td>DI level display range</td>
<td>MΩ</td>
</tr>
<tr>
<td>DI level set range</td>
<td>MΩ</td>
</tr>
<tr>
<td>Solenoid valve hysteresis for control</td>
<td>MΩ</td>
</tr>
<tr>
<td>DI level reduction alarm set range</td>
<td>MΩ</td>
</tr>
</tbody>
</table>

(Note) The DI filter is needed to control the DI level. (SMC Part No.: HRZ-DF001)

Please purchase additionally because the DI filter is not included in this option. Also, if necessary, additionally purchase the insulating material for the DI filter. (SMC Part No.: HRZ-DF002)

* Install the DI filter outside the Thermo-chiller for piping. Secure the space for installing the DI filter in the rear side of the Thermo-chiller.
* May go outside of the temperature stability range of ±0.3°C when this option is used in some operating conditions.

DI tube
(1 piece each attached for IN/OUT)

DI filter
(Optional accessories)
(Refer to page 121.)

* Please order separately.
Circulating fluid Automatic Recovery

HRW □□□ - □□□ - Z

Select this option for customers who want to use the circulating fluid automatic recovery function. The automatic recovery function is a device which can recover the circulating fluid inside pipings into a sub-tank of the Thermo-chiller by the external communication or operation display panel.

Some components need to be fitted by the customer. For details, consult "Product Specifications" information for these options.

<table>
<thead>
<tr>
<th>Applicable model</th>
<th>Common for all models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulating fluid recoverable volume Note 1)</td>
<td>3.2 gal (12 L)</td>
</tr>
<tr>
<td>Purge gas</td>
<td>Nitrogen gas</td>
</tr>
<tr>
<td>Purge gas supply port</td>
<td>Self-align fitting for O.D. ø0.3in (ø8mm) Note 2)</td>
</tr>
<tr>
<td>Purge gas supply pressure</td>
<td>58 to 102 psi (0.4 to 0.7 MPa)</td>
</tr>
<tr>
<td>Purge gas filtration</td>
<td>0.01 or less</td>
</tr>
<tr>
<td>Regulator set pressure</td>
<td>22 to 44 psi (0.15 to 0.3 MPa) Note 3)</td>
</tr>
<tr>
<td>Recoverable circulating fluid temperature</td>
<td>50 to 104°F (10 to 40°C)</td>
</tr>
<tr>
<td>Recovery start/stop</td>
<td>Start: External communication Note 4) or operation display panel/Stop: Automatic</td>
</tr>
<tr>
<td>Timeout error</td>
<td>Timer from recovery start to completion</td>
</tr>
<tr>
<td></td>
<td>Stops recovering when the timer turns to set time.</td>
</tr>
<tr>
<td></td>
<td>Possible set range: 60 to 300 sec, at the time of shipping from the factory: 300 sec</td>
</tr>
<tr>
<td>Height difference with the customer system side</td>
<td>32.8 ft (10 m) or less</td>
</tr>
</tbody>
</table>

Note 1) This is the space volume of the sub-tank when the liquid level of the circulating fluid is within the specification. Guideline of the recovery volume is 80% of the circulating fluid recoverable volume.

Note 2) Before piping, clean inside the pipings with air blow, etc. Use the piping with no dust generation by purge gas. When using resin tube, where necessary, use insert fittings, etc. in order not to deform the tubings when connecting to self-align fittings.

Note 3) At the time of shipping from factory, it is set to 29 psi (0.2 MPa).

Note 4) For details, please consult our “Communication Specifications” information.
By-pass Piping Set

When the circulating fluid goes below the rated flow, cooling capacity will be reduced and the temperature stability will be badly affected. In such a case, use the by-pass piping set.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW-BP001</td>
<td>Common for all models</td>
</tr>
</tbody>
</table>

Anti-quake Bracket

Bracket for earthquakes
Prepare the anchor bolts (M12) which are suited to the floor material by the customer.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRZ-TK002</td>
<td>Common for all models</td>
</tr>
</tbody>
</table>

Note) 2 pieces per set (for 1 unit) (HRZ-TK002)
4-Port Manifold

4-branching the circulating fluid enables 4 temperature controls at the maximum with the 1 unit Thermo-chiller. Order the heat insulator for 4 port manifold (HRW-MA002) separately if necessary.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW-MA001</td>
<td>Common for all models</td>
</tr>
<tr>
<td>HRW-MA002</td>
<td>Common for all models</td>
</tr>
</tbody>
</table>

DI Filter

This is the ion replacement resin to maintain the electric resistivity of the circulating fluid. Customers who selected the DI control kit (option Y) need to purchase the DI filter separately.

Insulating Material for DI Filter

When the DI filter is used at a high temperature, we recommend that you use this insulating material to protect the radiated heat from the DI filter or possible burns. We also recommend that you use this to prevent heat absorption from the DI filter and to avoid forming condensation.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRZ-DF002</td>
<td>Common for all models which can select the DI control kit. (option Y)</td>
</tr>
</tbody>
</table>
Contaminant Filter

A filter mounted in the circulating fluid circuit to eliminate the dust which is contained in the circulating fluid. (Filtration: 20 µm) It is provided with its own heat insulator.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRW-CF001</td>
<td>Common for all models</td>
</tr>
<tr>
<td>HRW-CF002</td>
<td></td>
</tr>
</tbody>
</table>

Note) The internal element of the contaminant filter (Part no.: HRW-CF002) is a replacement part. The period in service depends on the operating conditions.

60% Ethylene Glycol Aqueous Solution

This solution can be used as a circulating fluid for ethylene glycol-type Thermo-chillers. (Capacity: 2.6 gal (10 L))

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRZ-BR001</td>
<td>Common for all ethylene glycol-type models</td>
</tr>
</tbody>
</table>

Concentration Meter

This meter can be used to control the concentration of ethylene glycol aqueous solution regularly.

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Applicable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRZ-BR002</td>
<td>Common for all ethylene glycol-type models</td>
</tr>
</tbody>
</table>
Specific Product Precautions 1

Design

Warning

1. **This catalog shows the specifications of a single unit.**
 1. For details, please consult our “Product Specifications” and thoroughly consider the adaptability between the customer’s system and this unit.
 2. Although the protection circuit as a single unit is installed, the customer is requested to carry out the safety design for the whole system.

Caution

1. **Model selection**
 In order to select the correct Thermo-chiller model, the amount of thermal generation from the customer’s system, the operating circulating fluid, and its circulating flow are required. Select a model, by referring to the guideline to model selection on page 104.

2. **Option selection**
 Options have to be selected when ordering the Thermo-chiller. It is not possible to add them after purchasing the unit.

Handling

Warning

1. **Thoroughly read the Operation Manual.**
 Read the Operation Manual completely before operation, and keep this manual available whenever necessary.

Operating Environment/Storage Environment

Caution

1. **Do not use in the following environment because it will lead to a breakdown.**
 1. Environment like written in “Temperature Control Equipment Precautions.”
 2. Locations where spatter will adhere to when welding.
 3. Locations where it is likely that the leakage of flammable gas may occur.
 4. Locations where the ambient temperature exceeds the limits as mentioned below.
 - During operation 50 to 95°F (10 to 35°C)
 - During storage 32 to 122°F (0 to 50°C) (but as long as water or circulating fluid are not left inside the pipings)
 5. Locations where the ambient relative humidity exceeds the limit as mentioned below.
 - During operation 30% to 70%
 - During storage 15% to 85%
 6. (Inside the operation facilities) locations where there is not sufficient space for maintenance.
 7. In locations where the ambient pressure exceeds the atmospheric pressure.

2. **The Thermo-chiller does not have clean room specification.** It generates dust from the pump inside the unit and the cooling fan for the unit inside.

Circulating Fluid

Caution

1. **Avoid oil or other foreign objects entering the circulating fluid.**
2. **Use ethylene glycol that does not contain additives such as preservatives.**
3. **The condensation of ethylene glycol aqueous solution must be 60% or less.** If the condensation is too high, the pump will be overloaded, resulting in occurrence of “Pump Breaker Trip FLT”.
4. **Avoid water moisture entering the fluorinated fluid.**
5. **Use clear water (including for diluting ethylene glycol aqueous solution) which must meet the water quality standards as mentioned below.**

Clear Water (as Circulating Fluid) Quality Standards

The Japan Refrigeration and Air Conditioning Industry Association JRA GL-02-1994 “Cooling water system – Circulation type – Make-up water”

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Standard value</th>
<th>Influence Corrosion</th>
<th>Scale generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (at 77°F (25°C)</td>
<td>—</td>
<td>6.0 to 8.0</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Electrical conductivity (77°F)</td>
<td>[µS/cm]</td>
<td>100 to 300</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Chloride ion (Cl-)</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Sulfuric acid ion (SO4²⁻)</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Acid consumption amount (at pH4.8)</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Total hardness</td>
<td>[mg/L]</td>
<td>70 or less</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Calcium hardness (CaCO₃)</td>
<td>[mg/L]</td>
<td>50 or less</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Ionic state silica (SiO₂)</td>
<td>[mg/L]</td>
<td>30 or less</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>[mg/L]</td>
<td>0.3 or less</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>[mg/L]</td>
<td>0.1 or less</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Sulfide ion (S₂⁻)</td>
<td>[mg/L]</td>
<td>Should not be detected</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Ammonium ion (NH₄⁺)</td>
<td>[mg/L]</td>
<td>0.1 or less</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Residual chlorine (Cl⁻)</td>
<td>[mg/L]</td>
<td>0.3 or less</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Free carbon (CO₂)</td>
<td>[mg/L]</td>
<td>4.0 or less</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

* In the case of [µS/cm], it will be 0.003 to 0.01.
* ○: Factors that have an effect on corrosion or scale generation.
* Even if the water quality standards are met, complete prevention of corrosion is not guaranteed.

Transportation/Transfer/Movement

Warning

1. **Transportation by forklift**
 1. It is not possible to hang this product.
 2. The fork insertion position is either on the left side face or right side face of the unit. Be careful not to bump the fork against a caster or level foot and be sure to put through the fork to the opposite side.
 3. Be careful not to bump the fork to the cover panel or piping ports.

2. **Transportation by casters**
 1. This product is heavy and should be moved by at least two people.
 2. Do not grip the pipings on the rear side or the handles of the panel.

Related Products

SMC

Technical Data

123

1. Regarding the circulating fluid pipings, consider carefully the suitability for shutoff pressure, temperature and circulating fluid. If the operating performance specifications are regularly exceeded, the pipings may burst during operation.

2. The surface of the circulating fluid pipings should be covered with the insulating materials which can effectively confine the heat. Absorbing the heat from the surface of pipings may reduce the cooling capacity performance and the heating capacity may be shortened due to heat radiation.

3. When using fluorinated liquid as the circulating fluid, do not use pipe tape. Liquid leakage may occur around the pipe tape. For sealant, we recommend that you use the following sealant: SMC Part No., HRZ-S0003 (Silicone sealant)

4. For the circulating fluid pipings, use clean pipings which have no dust, oil or water moisture inside the pipings, and blow with air prior to undertaking any piping works. If any dust, oil or water moisture enters the circulating fluid circuit, inferior cooling performance or equipment failure due to frozen water may occur, resulting in bubbles in the circulating fluid inside the tank.

5. Select the circulating fluid pipings which can exceed the required rated flow. For the rated flow, refer to the pump capacity table.

6. For the circulating fluid piping connection, install a drain pan just in case the circulating fluid may leak.

7. Do not return the circulating fluid to the unit by installing a pump in the customer system.

Mounting/Installation

Caution

1. Avoid using this product outdoors.
2. Install on a rigid floor which can withstand this product's weight.
3. Please install a suitable anchor bolt for the anti-seismic bracket taking into consideration the customers floor material.
4. Avoid placing heavy objects on this product.

Electrical Wiring

Caution

1. Power supply and signal cable should be prepared by the customer.
2. Provide a stable power supply which is not affected by surge or distortion. If the voltage increase ratio (dV/dt) at the zero cross should exceed 40 V/200 µsec., it may result in a malfunction.
3. This product is installed with a breaker with the following operating characteristics.
 For the customer's machine (inlet side), use a breaker whose operating time is equal to or longer than the breaker of this product. If a breaker with shorter operating time is connected, the customer's machine could be cut off due to the inrush current of the motor of this product.

Piping

Caution

1. Regarding the circulating fluid pipings, consider carefully the suitability for shutoff pressure, temperature and circulating fluid.
 If the operating performance specifications are regularly exceeded, the pipings may burst during operation.

2. The surface of the circulating fluid pipings should be covered with the insulating materials which can effectively confine the heat.

3. When using fluorinated liquid as the circulating fluid, do not use pipe tape. Liquid leakage may occur around the pipe tape. For sealant, we recommend that you use the following sealant: SMC Part No., HRZ-S0003 (Silicone sealant)

4. For the circulating fluid pipings, use clean pipings which have no dust, oil or water moisture inside the pipings, and blow with air prior to undertaking any piping works.

Breaker Operating Characteristics

Common for all models
Series HRW
Specific Product Precautions 3
Be sure to read this before handling. Refer to back page 1 for Safety Instructions and back pages 2 to 5 for Temperature Control Equipment Precautions.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Maintenance</th>
</tr>
</thead>
</table>

⚠️ Caution

1. Confirmation before operation
 1. The circulating fluid should be within the specified range of “HIGH” and “LOW”.
 2. Be sure to tighten the cap for the circulating fluid port until the click sound is heard.

2. Emergency stop method
 In the case of an emergency, press down the EMO switch which is fitted on the front face of this product.

⚠️ Warning

1. Do not operate the switch with wet hands or touch electrical parts such as an electrical plug. This will lead to an electrical shock.

2. Do not splash water directly on this product for cleaning. This will lead to an electrical shock or a fire.

3. When the panel was removed for the purpose of inspection or cleaning, mount the panel after works were done.
 If the panel is still open, or running the equipment with the panel removed, it may cause an injury or electric shock.

⚠️ Caution

1. In order to prevent a sudden product failure of the unit, replace the replacement parts every 36 months.

2. Perform an inspection of the circulating fluid every 3 months.
 1. In the case of fluorinated fluids:
 Discharge the circulating liquid and avoid any dirty objects, or water moisture, or foreign objects entering the system.
 2. In the case of ethylene glycol aqueous solution:
 Maintain the condensation at 60%.
 3. In case of clear water, deionized water:
 Replacement is recommended.

3. Check the water quality of facility water every 3 months.
 Regarding the water quality standards for facility water, refer to “Temperature Control Equipment Precautions”.

125